393 research outputs found

    Algebraic and Topological Indices of Molecular Pathway Networks in Human Cancers

    Full text link
    Protein-protein interaction networks associated with diseases have gained prominence as an area of research. We investigate algebraic and topological indices for protein-protein interaction networks of 11 human cancers derived from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We find a strong correlation between relative automorphism group sizes and topological network complexities on the one hand and five year survival probabilities on the other hand. Moreover, we identify several protein families (e.g. PIK, ITG, AKT families) that are repeated motifs in many of the cancer pathways. Interestingly, these sources of symmetry are often central rather than peripheral. Our results can aide in identification of promising targets for anti-cancer drugs. Beyond that, we provide a unifying framework to study protein-protein interaction networks of families of related diseases (e.g. neurodegenerative diseases, viral diseases, substance abuse disorders).Comment: 15 pages, 4 figure

    The Bioelectric Circuitry of the Cell

    Get PDF
    This chapter presents an overview of electric conduction in living cells when viewed as a composition of bioelectric circuits. We review the cell's components that are known to exhibit electric conduction properties and represent them as parts of a complex circuitry. In particular, we discuss conductivity of the membrane, ion channels, actin filaments, DNA, and microtubules, each of which play important roles in the biological functioning of the cell. A new picture emerges where electrical conduction within the cell is taking place in an integrated fashion and may explain synchronization and orchestration of the cell dynamics

    Are there optical communication channels in the brain?

    Full text link
    Despite great progress in neuroscience, there are still fundamental unanswered questions about the brain, including the origin of subjective experience and consciousness. Some answers might rely on new physical mechanisms. Given that biophotons have been discovered in the brain, it is interesting to explore if neurons use photonic communication in addition to the well-studied electro-chemical signals. Such photonic communication in the brain would require waveguides. Here we review recent work [S. Kumar, K. Boone, J. Tuszynski, P. Barclay, and C. Simon, Scientific Reports 6, 36508 (2016)] suggesting that myelinated axons could serve as photonic waveguides. The light transmission in the myelinated axon was modeled, taking into account its realistic imperfections, and experiments were proposed both in-vivo and in-vitro to test this hypothesis. Potential implications for quantum biology are discussed.Comment: 13 pages, 5 figures, review of arXiv:1607.02969 for Frontiers in Bioscience, updated figures, new references on existence of opsins in the brain and experimental effects of light on neuron
    • …
    corecore